(0) Obligation:

Clauses:

right(tree(X, XS1, XS2), XS2).
flat(niltree, nil).
flat(tree(X, niltree, XS), cons(X, YS)) :- ','(right(tree(X, niltree, XS), ZS), flat(ZS, YS)).
flat(tree(X, tree(Y, YS1, YS2), XS), ZS) :- flat(tree(Y, YS1, tree(X, YS2, XS)), ZS).

Query: flat(g,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

flatA(niltree, nil).
flatA(tree(T18, niltree, T19), cons(T18, T9)) :- flatA(T19, T9).
flatA(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59)) :- flatA(tree(T69, T70, T71), T59).
flatA(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96) :- flatA(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96).

Query: flatA(g,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
flatA_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

flatA_in_ga(niltree, nil) → flatA_out_ga(niltree, nil)
flatA_in_ga(tree(T18, niltree, T19), cons(T18, T9)) → U1_ga(T18, T19, T9, flatA_in_ga(T19, T9))
flatA_in_ga(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59)) → U2_ga(T69, T68, T70, T71, T59, flatA_in_ga(tree(T69, T70, T71), T59))
flatA_in_ga(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96) → U3_ga(T92, T88, T89, T90, T91, T93, T94, T96, flatA_in_ga(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96))
U3_ga(T92, T88, T89, T90, T91, T93, T94, T96, flatA_out_ga(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96)) → flatA_out_ga(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96)
U2_ga(T69, T68, T70, T71, T59, flatA_out_ga(tree(T69, T70, T71), T59)) → flatA_out_ga(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59))
U1_ga(T18, T19, T9, flatA_out_ga(T19, T9)) → flatA_out_ga(tree(T18, niltree, T19), cons(T18, T9))

The argument filtering Pi contains the following mapping:
flatA_in_ga(x1, x2)  =  flatA_in_ga(x1)
niltree  =  niltree
flatA_out_ga(x1, x2)  =  flatA_out_ga(x1, x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)
U2_ga(x1, x2, x3, x4, x5, x6)  =  U2_ga(x1, x2, x3, x4, x6)
U3_ga(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U3_ga(x1, x2, x3, x4, x5, x6, x7, x9)
cons(x1, x2)  =  cons(x1, x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

flatA_in_ga(niltree, nil) → flatA_out_ga(niltree, nil)
flatA_in_ga(tree(T18, niltree, T19), cons(T18, T9)) → U1_ga(T18, T19, T9, flatA_in_ga(T19, T9))
flatA_in_ga(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59)) → U2_ga(T69, T68, T70, T71, T59, flatA_in_ga(tree(T69, T70, T71), T59))
flatA_in_ga(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96) → U3_ga(T92, T88, T89, T90, T91, T93, T94, T96, flatA_in_ga(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96))
U3_ga(T92, T88, T89, T90, T91, T93, T94, T96, flatA_out_ga(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96)) → flatA_out_ga(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96)
U2_ga(T69, T68, T70, T71, T59, flatA_out_ga(tree(T69, T70, T71), T59)) → flatA_out_ga(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59))
U1_ga(T18, T19, T9, flatA_out_ga(T19, T9)) → flatA_out_ga(tree(T18, niltree, T19), cons(T18, T9))

The argument filtering Pi contains the following mapping:
flatA_in_ga(x1, x2)  =  flatA_in_ga(x1)
niltree  =  niltree
flatA_out_ga(x1, x2)  =  flatA_out_ga(x1, x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)
U2_ga(x1, x2, x3, x4, x5, x6)  =  U2_ga(x1, x2, x3, x4, x6)
U3_ga(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U3_ga(x1, x2, x3, x4, x5, x6, x7, x9)
cons(x1, x2)  =  cons(x1, x2)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

FLATA_IN_GA(tree(T18, niltree, T19), cons(T18, T9)) → U1_GA(T18, T19, T9, flatA_in_ga(T19, T9))
FLATA_IN_GA(tree(T18, niltree, T19), cons(T18, T9)) → FLATA_IN_GA(T19, T9)
FLATA_IN_GA(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59)) → U2_GA(T69, T68, T70, T71, T59, flatA_in_ga(tree(T69, T70, T71), T59))
FLATA_IN_GA(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59)) → FLATA_IN_GA(tree(T69, T70, T71), T59)
FLATA_IN_GA(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96) → U3_GA(T92, T88, T89, T90, T91, T93, T94, T96, flatA_in_ga(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96))
FLATA_IN_GA(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96) → FLATA_IN_GA(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96)

The TRS R consists of the following rules:

flatA_in_ga(niltree, nil) → flatA_out_ga(niltree, nil)
flatA_in_ga(tree(T18, niltree, T19), cons(T18, T9)) → U1_ga(T18, T19, T9, flatA_in_ga(T19, T9))
flatA_in_ga(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59)) → U2_ga(T69, T68, T70, T71, T59, flatA_in_ga(tree(T69, T70, T71), T59))
flatA_in_ga(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96) → U3_ga(T92, T88, T89, T90, T91, T93, T94, T96, flatA_in_ga(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96))
U3_ga(T92, T88, T89, T90, T91, T93, T94, T96, flatA_out_ga(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96)) → flatA_out_ga(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96)
U2_ga(T69, T68, T70, T71, T59, flatA_out_ga(tree(T69, T70, T71), T59)) → flatA_out_ga(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59))
U1_ga(T18, T19, T9, flatA_out_ga(T19, T9)) → flatA_out_ga(tree(T18, niltree, T19), cons(T18, T9))

The argument filtering Pi contains the following mapping:
flatA_in_ga(x1, x2)  =  flatA_in_ga(x1)
niltree  =  niltree
flatA_out_ga(x1, x2)  =  flatA_out_ga(x1, x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)
U2_ga(x1, x2, x3, x4, x5, x6)  =  U2_ga(x1, x2, x3, x4, x6)
U3_ga(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U3_ga(x1, x2, x3, x4, x5, x6, x7, x9)
cons(x1, x2)  =  cons(x1, x2)
FLATA_IN_GA(x1, x2)  =  FLATA_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x2, x4)
U2_GA(x1, x2, x3, x4, x5, x6)  =  U2_GA(x1, x2, x3, x4, x6)
U3_GA(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U3_GA(x1, x2, x3, x4, x5, x6, x7, x9)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FLATA_IN_GA(tree(T18, niltree, T19), cons(T18, T9)) → U1_GA(T18, T19, T9, flatA_in_ga(T19, T9))
FLATA_IN_GA(tree(T18, niltree, T19), cons(T18, T9)) → FLATA_IN_GA(T19, T9)
FLATA_IN_GA(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59)) → U2_GA(T69, T68, T70, T71, T59, flatA_in_ga(tree(T69, T70, T71), T59))
FLATA_IN_GA(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59)) → FLATA_IN_GA(tree(T69, T70, T71), T59)
FLATA_IN_GA(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96) → U3_GA(T92, T88, T89, T90, T91, T93, T94, T96, flatA_in_ga(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96))
FLATA_IN_GA(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96) → FLATA_IN_GA(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96)

The TRS R consists of the following rules:

flatA_in_ga(niltree, nil) → flatA_out_ga(niltree, nil)
flatA_in_ga(tree(T18, niltree, T19), cons(T18, T9)) → U1_ga(T18, T19, T9, flatA_in_ga(T19, T9))
flatA_in_ga(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59)) → U2_ga(T69, T68, T70, T71, T59, flatA_in_ga(tree(T69, T70, T71), T59))
flatA_in_ga(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96) → U3_ga(T92, T88, T89, T90, T91, T93, T94, T96, flatA_in_ga(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96))
U3_ga(T92, T88, T89, T90, T91, T93, T94, T96, flatA_out_ga(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96)) → flatA_out_ga(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96)
U2_ga(T69, T68, T70, T71, T59, flatA_out_ga(tree(T69, T70, T71), T59)) → flatA_out_ga(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59))
U1_ga(T18, T19, T9, flatA_out_ga(T19, T9)) → flatA_out_ga(tree(T18, niltree, T19), cons(T18, T9))

The argument filtering Pi contains the following mapping:
flatA_in_ga(x1, x2)  =  flatA_in_ga(x1)
niltree  =  niltree
flatA_out_ga(x1, x2)  =  flatA_out_ga(x1, x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)
U2_ga(x1, x2, x3, x4, x5, x6)  =  U2_ga(x1, x2, x3, x4, x6)
U3_ga(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U3_ga(x1, x2, x3, x4, x5, x6, x7, x9)
cons(x1, x2)  =  cons(x1, x2)
FLATA_IN_GA(x1, x2)  =  FLATA_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x2, x4)
U2_GA(x1, x2, x3, x4, x5, x6)  =  U2_GA(x1, x2, x3, x4, x6)
U3_GA(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U3_GA(x1, x2, x3, x4, x5, x6, x7, x9)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FLATA_IN_GA(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59)) → FLATA_IN_GA(tree(T69, T70, T71), T59)
FLATA_IN_GA(tree(T18, niltree, T19), cons(T18, T9)) → FLATA_IN_GA(T19, T9)
FLATA_IN_GA(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96) → FLATA_IN_GA(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96)

The TRS R consists of the following rules:

flatA_in_ga(niltree, nil) → flatA_out_ga(niltree, nil)
flatA_in_ga(tree(T18, niltree, T19), cons(T18, T9)) → U1_ga(T18, T19, T9, flatA_in_ga(T19, T9))
flatA_in_ga(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59)) → U2_ga(T69, T68, T70, T71, T59, flatA_in_ga(tree(T69, T70, T71), T59))
flatA_in_ga(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96) → U3_ga(T92, T88, T89, T90, T91, T93, T94, T96, flatA_in_ga(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96))
U3_ga(T92, T88, T89, T90, T91, T93, T94, T96, flatA_out_ga(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96)) → flatA_out_ga(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96)
U2_ga(T69, T68, T70, T71, T59, flatA_out_ga(tree(T69, T70, T71), T59)) → flatA_out_ga(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59))
U1_ga(T18, T19, T9, flatA_out_ga(T19, T9)) → flatA_out_ga(tree(T18, niltree, T19), cons(T18, T9))

The argument filtering Pi contains the following mapping:
flatA_in_ga(x1, x2)  =  flatA_in_ga(x1)
niltree  =  niltree
flatA_out_ga(x1, x2)  =  flatA_out_ga(x1, x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)
U2_ga(x1, x2, x3, x4, x5, x6)  =  U2_ga(x1, x2, x3, x4, x6)
U3_ga(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U3_ga(x1, x2, x3, x4, x5, x6, x7, x9)
cons(x1, x2)  =  cons(x1, x2)
FLATA_IN_GA(x1, x2)  =  FLATA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FLATA_IN_GA(tree(T69, tree(T68, niltree, T70), T71), cons(T68, T59)) → FLATA_IN_GA(tree(T69, T70, T71), T59)
FLATA_IN_GA(tree(T18, niltree, T19), cons(T18, T9)) → FLATA_IN_GA(T19, T9)
FLATA_IN_GA(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94), T96) → FLATA_IN_GA(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))), T96)

R is empty.
The argument filtering Pi contains the following mapping:
niltree  =  niltree
tree(x1, x2, x3)  =  tree(x1, x2, x3)
cons(x1, x2)  =  cons(x1, x2)
FLATA_IN_GA(x1, x2)  =  FLATA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FLATA_IN_GA(tree(T69, tree(T68, niltree, T70), T71)) → FLATA_IN_GA(tree(T69, T70, T71))
FLATA_IN_GA(tree(T18, niltree, T19)) → FLATA_IN_GA(T19)
FLATA_IN_GA(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94)) → FLATA_IN_GA(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

FLATA_IN_GA(tree(T69, tree(T68, niltree, T70), T71)) → FLATA_IN_GA(tree(T69, T70, T71))
FLATA_IN_GA(tree(T18, niltree, T19)) → FLATA_IN_GA(T19)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(FLATA_IN_GA(x1)) = 2·x1   
POL(niltree) = 0   
POL(tree(x1, x2, x3)) = 2·x1 + 2·x2 + x3   

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FLATA_IN_GA(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94)) → FLATA_IN_GA(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(15) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

FLATA_IN_GA(tree(T92, tree(T88, tree(T89, T90, T91), T93), T94)) → FLATA_IN_GA(tree(T89, T90, tree(T88, T91, tree(T92, T93, T94))))


Used ordering: Polynomial interpretation [POLO]:

POL(FLATA_IN_GA(x1)) = 2·x1   
POL(tree(x1, x2, x3)) = 2 + 2·x1 + 2·x2 + x3   

(16) Obligation:

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) YES